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Abstract. A new computational method based on Wilson wavelets is proposed for

solving Bessel equation of zero order. To do this an operational matrix of integration
for Wilson wavelets is obtained. Using approximation method of Wilson wavelets,
Bessel equation are reduced to algebraic equations which can be solved simply to
obtain an approximate solution for the problem. Several examples are presented

below to demonstrate the applicability and accuracy of this method.

1. Introduction

Bessel equation is a second-order differential equation with two linearly independent
solutions. The linear second-order ordinary differential equation of type

x2y′′(x) + xy′(x) + (x2 − n2)y = 0

is called Bessel equation where number n is the order of the Bessel equation. The given
differential equation is named after the German mathematician and astronomer Friedrich
Wilhelm Bessel who studied this equation in details and showed that its solutions
can be expressed in terms of a special class of functions called cylinder functions or
Besel functions [4, 5]. Due to space and time constraints the interest of studying the
applications of the Bessel functions will be represented as series of solution [2, 6, 7, 8, 9].
Bessel functions are series of solution to a second order differential equation that arise in
diverse situations. The Bessel functions appear in many diverse scenarios, particularly
the situations involving cylindrical symmetry [1, 3]. The most difficult aspect of working
with the Bessel functions is determining whether it can be applied through reduction of
the system of equations to Bessel differential or modified equation and then manipulating
boundary conditions with appropriate application of zeroes and the coefficient values on
the argument of the Bessel functions [10, 11, 12].
The special Bessel functions are widely used in solving problems of theoretical physics
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i.e, investigating wave propagation, heat conduction and vibration of membranes.

Assuming that the number n is non-integer and positive, the general solution of the
Bessel equation can be written as:

y (x) = C1Jn (x) + C2J−n (x) ,

where C1, C2 are arbitrary constants and Jn (x) , J−n (x) are Bessel functions of the
first kind.

The Bessel functions can be represented by a series, The terms of which are expressed
using the so-called Gamma function:

Jn (x) =
∞∑
p=0

(−1)
p

Γ (p+ 1)Γ (p+ n+ 1)

(x
2

)2p+n

.

The Gamma function is the generalization of the factorial function from integers to all
real numbers. It has the following properties:

Γ (p+ 1) = p!, Γ (p+ n+ 1) = (n+ 1) (n+ 2) · · · (n+ p) Γ (n+ 1) .

In this paper, we will discuss the Wilson wavelets method to solve the problems. Also, we
have solved several sample examples to show the accuracy and efficiency of the Willson
wavelets and compared our outcome with the exact result [14, 15, 13].

2. Wilson Wavelet

In this section, we have briefly introduced the Wilson wavelets [13] and some of its
properties which are used in the sequel of the paper.
Wilson introduced a system of basis functions as follows

ψnm(t) =

{
∈n cos(2nπt)ω(t− m

2 ), m is even,√
2 sin(2(n+ 1)πt)ω(t− m+1

2 ), m is odd,
(2.1)

where

∈n=

{
1, n = 0,√
2, n ∈ N,

with a smooth well-localized window function ω. The elements of this system are
localized around positive and negative frequency. Based on this system basis functions,
Daubechies constructed an orthonormal system and called it as Wilson bases. Now we
consider ω = χ[r,r+1), where r ∈ Z in (1) i.e.

ψnm(t) =

{
∈n cos(2nπt)χ[r,r+1)(t− m

2 ), m is even,√
2 sin(2(n+ 1)πt)χ[r,r+1)(t− m+1

2 ), m is odd,
(2.2)
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where

∈n=

{
1, n = 0,√
2, n ∈ N.

The set {ψnm(t)|m ∈ Z, n ∈ N ∪ 0} is a tight frame for L2(R) with bound 1 [13]. Now
we can show that for r ∈ Z, the set {ψnm(t)|m ∈ −2r − 1,−2r, n ∈ N ∪ 0} in (2) is an
orthonormal basis for L2[0, 1), which we called as Wilson wavelets.

3. Function Approximation

Any square integrable function f(t) defined on [0,1) can be expanded in terms of
Wilson wavelet as [13]

f(t) =
∞∑

n=0

cn,−2rψn,−2r(t) +
∞∑

n=0

cn,−2r−1ψn,−2r−1(t), (3.1)

where cnm = < f(t), ψnm(t) >, m ∈ {−2r − 1,−2r} and < ., . > denotes the inner
product on L2[0, 1). If the infinite series (3.3) is truncated, then it can be written as

f(t) ∼
2k−1∑
n=0

−2r∑
m=−2r−1

cnmψnm(t)
∆
= CTΨ(t), (3.2)

where C and Ψ(t) are m̂ = 2k+1 column vectors given by

C
∆
= [c0,−2r−1, c0,−2r, c1,−2r, · · · , c2k−1,−2r−1, c2k−1,−2r]

T ,

Ψ(t)
∆
= [ψ(t)0,−2r−1, ψ(t)0,−2r, · · · , ψ(t)2k−1,−2r−1, ψ(t)2k−1,−2r]

T ,

For simplicity, (3.4) can be written as

f(t) ≃ Pm̂f(t) =
m̂∑
i=1

ciψi(t)
∆
= CTΨ(t),

where ci = cnm, ψi(t) = ψnm(t), P is operational matrix of Wilson wavelets and the
index i is determined by the relation i = 2n+m+ 2 + 2r.
thus we have

C
∆
= [c1, c2, · · · , cm̂]T ,

and

Ψ(t)
∆
= [ψ1(t), ψ2(t), · · · , ψm̂(t)]T .

4. Numerical algorithm

In this section, we will obtain an algorithim for approximating the solution of second-
order differential equation with given initial conditions using Wilson wavelets.

Let us consider the equation:

a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = f(x), (4.1)

with
y(0) = α and y′(0) = β.
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where a, b, c and f are the functions of x or constants.
Now approximating a, b, c and f by using section 3. Let us assume a, b, c, f, y′(0) and
y(0) as:

a(x) = ATψ(t), (4.2)

b(x) = BTψ(t), (4.3)

c(x) = CTψ(t), (4.4)

f(x) = FTψ(t), (4.5)

y′(0 ) = ET
0 ψ(t), (4.6)

y(0) = DT
0 ψ(t), (4.7)

In order to solve this problem with initial conditions we assume that

y′′(x) = Y Tψ(t), (4.8)

Integrating (4.8) from 0 to x we get

y′(x) = Y Tψ(t) + ET
0 ψ(t), (4.9)

Further integrating (4.9) from 0 to x we get

y(x) = Y TP 2ψ(t) + ET
0 Pψ(t) +DT

0 ψ(t), (4.10)

Using (4.2) to (4.10) in the (4.1) we get

FψT (t) = ATψ(t)ψT (t)Y +BTψ(t)[ψT (t)PTY + ψT (t)E0]+

CTψ(t)[ψT (t)P 2TY + ψT (t)PTE0 + ψT (t)D0], (4.11)

By assuming MTψ(t)ψT (t) = ψT (t)M̃ [2], ATψ(t)ψT (t) can be written as ÃY and
using this in (4.11) we have

ÃY + B̃PTY + B̃E0 + C̃P 2TY + C̃PTET
0 + C̃D0 = F, (4.12)

Taking all Y on LHS side we get

ÃY + B̃PTY + C̃P 2TY = F − (B̃E0 + C̃PTET
0 + C̃D0). (4.13)

Now, we can easily find the Y from (4.13) and then put the values of Y in equation
(4.10) to get the approximated solution of differential equation.

5. Examples

In this section, we have considered some numerical examples to illustrate the efficiency
and reliability of the proposed method. These examples are considered because their
exact solutions are available. In the following examples, M denote the number of vectors
for Wilson wavelets.

Example 5.1. Consider the Bessel differential equation of zero order.

x2y′′(x) + xy′(x) + x2y = 0,

with initial condition

y′(0) = 0 and y(0) = 1.
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The general solution of this equation can be expressed in terms of the so-called modified
Bessel functions of the first kind as:

y (x) = C1Jn (−ix) + C2Yn (−ix)

where Jn (x) are modified Bessel function of the first kind and C1, C2 are arbitrary
constants and n = 0.
The graphs are plotted in Mathematica Software.
In all the graphs given below ỹ[t] represent the approximated solution and J0(x)
represent the series of Bessel function of zero order.
Consider the case by taking M = 4× 4 we get the approximated solution as:

ỹ[t] = 0.23276416− 0.00974303 cos[2πt]− 0.141408 sin[2πt]− 0.070166 sin[4πt].

Figure 1: The graph of the exact and approximate solution for M = 4× 4.

Consider the case by taking M = 8× 8 and get the approximated solution as :
ỹ[t]=0.22831001807459747 + 0.01160601997286028 cos[2πt] +
0.003985314088717216 cos[4πt] + 0.0018360721287797189 cos[6πt] +
0.1437807423842789 sin[2πt] + 0.07168341886974688 sin[4πt] +
0.0473118947656462 sin[6πt] + 0.03556151413356036 sin[8πt].

Figure 2: The graph of the exact and approximate solution for M = 8× 8.
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Consider the case by taking M = 16× 16 and get the approximated solution as:
ỹ[t] = 0.234070207065769738− 0.01887069463309948 cos[2πt]−
0.006487201508958887 cos[4πt] −0.004069573719593767 cos[6πt]−
0.0028559259602340846 cos[8πt]− 0.0019501232582299324 cos[10πt]−
0.0011685960928342757 cos[12πt]− 0.0005264208072223118 cos[14πt]−
0.15915005940496327 sin[2πt] −0.07052672059639523 sin[4πt]−
0.047927964774899766 sin[6πt]− 0.036726955801752115 sin[8πt]
0.02997844293051051 sin[10πt]− 0.025348432337563436 sin[12πt]−
0.02183780599022417 sin[14πt]− 0.018492653001514234 sin[16πt].

Figure 3: The graph of the exact and approximate solution for M = 16× 16.

Taking different values for M we have seen that with increase in value of M the error is
much reduced. The table for L2-error obtained by Wilson wavelets for different values
of M is given below:

M Error
4 0.034502
8 0.032589
16 0.021302

Example 5.2. Consider the differential equation

y′′(t) + y(t) = 0,

with initial condition

y′(0) = 0 and y(0) = 1.

The exact solution of the above Equation is

y(t) = cos(t).

The graphs are plotted in Mathematica Software.
In all the graphs given below ỹ[t] represent the approximated solution and y[t] represent
the exact solution.
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The approximated solution obtained in the first case by taking M = 4× 4:

ỹ(t) = 4π
(−4(π − 28π3 + 32π5) cos[2πt] + (−1 + 4π2)(π − 36π3 + 64π5+)

1− 56π2 + 864π4 − 1920π6 + 1280π8

+
(2− 56π2 + 32π4) sin[2πt] + (1− 24π2 + 16π4) sin[4πt]))

1− 56π2 + 864π4 − 1920π6 + 1280π8
.

Figure 4: The graph of the exact and approximate solution for M = 4× 4.

Figure 5: The graph of the exact and approximate solution for M = 8× 8.

Figure 6: The graph of the exact and approximate solution for M = 16× 16.
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Figure 7: The graph of the exact and approximate solution for M = 32× 32.

Taking different values for M we have seen that with increase in value of M the error is
much reduced. The table for L2-error obtained by Wilson wavelets for different values
of M is given below:

M Error
4 0.0721653
8 0.0540934
16 0.0436903
32 0.0370244

6. Conclusion

In this research paper we have demonstrated that the Wilson wavelets is a powerful
tool for solving Bessel equation of zero order. The proposed method is computationally
efficient and the algorithm can be easily implemented on computer. The results obtained
from the proposed method are compared with the exact solutions. The work done
in this paper can also be extended for solving nonlinear fractional integro-differential
equation. In future we will use Wilson wavelets along with collocation method to solve
non linear fractional integro-differential equation and will also compare our result with
Haar wavelet and CAS wavelet.
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