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Abstract. We calculate the interfacial surface tension of a QGP-fireball in a hadronic
medium in the Ramanathan et al statistical model. The constancy of the ratio of the
surface tension with the cube of the critical transition temperature is in overall accordance
with lattice QCD findings. It is in complete agreement with a recent MIT bag model
calculation of surface tension. The velocity of sound in the QGP droplet is predicted
to be in the range (0.27 ± 0.02) times the velocity of light in vacuum and this value is
independent of both the value of the transition temperature and the model parameters.
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1. Introduction

The formation of quark-gluon plasma (QGP) droplet (fireball) is one of the most
exciting possibilities in the ultra-relativistic heavy ion collision (URHIC) [1]. The
physics of such an event is very complicated and to extract meaningful results from a
rigorous use of quantum chromodynamics (QCD), a theory of strong interaction, to
this physical system is almost intractable, though heroic efforts at lattice estimation
of the problem has been going on for quite some time [2]. One way out is to replicate
the approximation schemes which have served as theoretical tools in understanding
equally complicated atomic and nuclear systems in atomic and nuclear physics in
the context of QGP droplet formation [3,4]. This approach lays no claim to rigour
or ab-initio ‘understanding’ of the phenomenon but lays the framework on which
more rigorous structures may be built depending on the phenomenological success
of the model as and when testable data emerge from ongoing experiments. There
is also a general consensus among experts that the QGP–hadron phase transition
is most probably a weakly first-order one, and the model calculation also lends
weightage to this conclusion, as this model can fit either a first-order or weakly
first-order scenario.

757



R Ramanathan et al

The central assumption in this approach is that the QGP–hadron system attains
a quasi-static equilibrium enabling applicability of equilibrium statistical mechanics
to the system. We are not the first to make this assumption which was pioneered
by the work of Satz and collaborators [1].

The nucleation process is driven by statistical fluctuations being determined by
the critical free energy difference between two phases. The Csernai–Kapusta et al
model [3,5] uses the liquid drop model expansion for this, as given by

ΔF =
4π

3
R3[Phad(T, μB) − Pq,g(T, μB)]

+4πR2σ + τcritT ln
[
1 +

(
4π

3

)
R3sq,g

]
. (1)

The first term represents the volume contribution, the second term is the surface
contribution where σ is the surface tension, and the last term is the so-called shape
contribution. The shape contribution is an entropy term on account of fluctuations
in droplet shape which we may ignore in the lowest order approximation. The
critical radius Rc can be obtained by minimising (1) with respect to the droplet
radius R, which in the Linde approximation [6] is

Rc =
2σ

Δp
or σ =

3ΔFc

4πR2
c

. (2)

In the approximation scheme of Ramanathan et al [4], the relativistic density
of states for the quarks and gluons is constructed adapting the procedures of the
Thomas–Fermi construction of the electronic density of states for complex atoms
and the Bethe density of states [6] for nucleons in the complex nuclei as templates.

In the next two sections we outline the Ramanathan et al statistical model [4]
and finally apply it to compute the interfacial surface tension.

2. A modified Thomas–Fermi model for the QGP droplet

In a very elegant and successful statistical model of atoms of large atomic numbers,
Thomas and Fermi [6] demonstrated the way to compute electronic density of states
to very high order of accuracy. The Thomas–Fermi model of atom assumes the
electrons to be Fermi–Dirac gas confined within a localized region by the confining
electrostatic potential V (r) of the central nucleus. The potential is assumed to
be varying very slowly in the region with average thermal energy T (setting the
Boltzmann constant to unity) and is small compared to V (r) within the region and
comparable to it near the boundary.

It is now straightforward [6] to compare the electronic density of states, assuming
all states to be filled in a volume ν. The total number of states is

Ne = p3
maxν/3π2. (3)

The maximum kinetic energy of the electron at any point in phase space should
not exceed the electrostatic potential (confining) at that point and therefore
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p2
max/2m = −V (k),

where k is the phase point under consideration and V (k) is the momentum trans-
form of the coordinate potential V (r). Therefore, the total density of states in
phase space is given by

∫
ρe(k)dk = [−2mV (k)]3/2ν/3π2 (4)

or

ρe(k) = [ν(2m)3/2/2π2] [−V (k)]1/2 ·
[
−dV (k)

dk

]
. (5)

In a modified ‘Thomas–Fermi’ [6] model adapted to the case of a QGP droplet,
the electrons get replaced by quarks which are also fermions, and the mini-
mum kinetic energy of the quarks at each point in phase space must exceed the
confining/de-confining potential at that point, since the QGP by definition is a
deconfined gas of relativistic quarks and gluons as against the non-relativistic elec-
tron of the conventional Thomas–Fermi Model. Therefore, pmin = [−Vconf(k)] and
pmax = [−Vconf(∞)] represents a reference energy and can be set to zero, remember-
ing that we are dealing with a relativistic system where k refers to the corresponding
quark momenta in phase space. So an expression similar to eq. (5) holds for the
quark-gluon density of states, with the replacement of V (k) with a suitable QCD-
induced phenomenological potential. The quark-gluon density of states is therefore

∫
ρq,gdk = [−Vconf(k)]3ν/3π2, (6)

or

ρq,g(k) = (ν/π2)
{

(−Vconf(k))2
(

dVconf(k)
dk

)}
q,g

, (7)

where ν is the volume occupied by the QGP and k is the relativistic four-momentum
in natural units. Vconf(k) could be any confining potential for quarks and gluons,
but for the present we choose to work with a modified thermal potential. The main
reason for this choice is our failure to obtain meaningful results with other potentials
available in the literature. This potential plays the role of a mean-field potential in
phase space as to the mean-field potential of the Thomas–Fermi scheme, but in a
very different context – namely the QGP-hadron system.

In this adaptation of the ‘Thomas–Fermi’ idea, we only capture the spirit of the
original idea for a system which is very different in detail. The primary difference
between the electron–gas cloud surrounding the Thomas–Fermi nuclei and the QGP
is the presence of the central potential in the former and the many-body QCD
potential in the latter, apart from the thermodynamically cold nature of the former
system as against the hot plasma with the hydrodynamical flows in the latter.
With all these differences in the background, we can still use the Thomas–Fermi
density of state (5) as a template to construct the quark density of states in a
QGP with suitable parametrisation to take care of the hydrodynamical (plasma)
characteristics of the QGP as we introduce in the next section.
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3. The phenomenological inter-quark potential and the free energy

The dynamical nature of the quarks and gluons in QGP forces us to seek an inter-
quark potential which can account for the bulk properties (thermodynamical) of
the quarks and gluons. The ideal thing to do is to find the effective mean field
QCD potential analogous to the Thomas–Fermi mean field potential for the QGP–
hadron system which however is a very complicated problem. So, for the present
we use the thermal mass formalism and the corresponding thermal Hamiltonian in
the litrature [7] leading us to the following choice for the confining/de-confining
potential.

The ‘thermal–Hamiltonian’ for the QGP is [7]

H(k, T ) = [k2 + m2(T )]1/2 ≡ k + m2(T )/2k for large k or,
H(k, T ) = k + m2

0/2k − {m2
0 − m2(T )}/2k, (8)

where

m2(T ) = γg,qg
2(k)T 2 (9)

with k is the quark(gluon) momentum, m0 is the dynamic rest mass of the quark,
T is the temperature and g(k) is the first-order QCD running coupling constant,
which for quarks with three flavors is [8]

g2(k) = (4/3)(12π/27){1/ ln(1 + k2/Λ2)}, (10)

with the QCD parameter Λ = 150 MeV. γg,q is the phenomenological parameter
which we take as γg = 1/3 and γq = 1/6 [7]. The third term in (8) can be interpreted
as an effective thermal potential for the QGP which has the form

Veff(k) = (1/2k)γg,qg
2(k)T 2 − m2

0/2k. (11)

These numerical coefficients are like the Reynold’s number in fluid flows and take
care of the deviations from linearity and other expected plasma characteristics of the
QGP ‘fluid’. The main advantage of this parametrisation is that it fits nicely with
lattice QCD simulations [7]. However, with the choice of (10) we have hybridised
the Peshier potential with the Richardson–Cornell coupling as we had earlier found,
that neither the pure Richardson–Cornell potential nor the pure Peshier potential
fits our bill, and numerical evaluation of the corresponding free energies are not of
the desirable form.

Since the QGP is a deconfined gas of quarks and gluons, the momentum of the
particles exceeds the potential of each point in phase space, whereby

kmin = V (kmin) or kmin = (γg,qN
1/3T 2Λ2/2)1/4, (12)

where N = (4/3)(12π/27). The above lower bound is valid for kmin � λ.
The existence of kmin leads to a natural low energy cut-off in the model leading

to finite integrals by avoiding the infra-red divergence. It is interesting to note that
kmin is of the same order of magnitude as Λ and T . This is unlike the models of
earlier authors who introduced the cut-off in a rather ad-hoc fashion [9].
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Thus for evaluation of density of states of the quarks we have to evaluate relation
(7) after introducing potential (11) in it. The gluons are also confined in the hadrons
and deconfined in the QGP, and we impose the low energy cut-off for the gluon
density of states as well, and this takes care of the consistency of the treatment of
both the gluon and quark sectors.

For the free energy we use the usual continuum expression for a system of non-
interacting fermions (upper sign) or bosons (lower sign) at temperature T . We
have

Fi = ∓Tgi

∫
dkρi(k) ln(1 ± e−(

√
m2

i +k2)/T ), (13)

where ρi(k) is the density of states of the particular particle, i (quarks, gluons,
interface, pions etc.) being the number of states with momentum between k and
k + dk in a spherically symmetric situation, and gi is the degeneracy factor (colour
and spin degeneracy) which is 6 for quarks and 8 for gluons and one each for pions
and the interface. The hadronic environment can be taken as mainly made up of
pions following Satz and others [9] as pions are expected to be the most copious
components of the hadronised state.

Unlike the assumption of the earlier authors [9], the interfacial surface is no longer
a MIT bag, and yet it has a contribution to free energy on account of the surface
energy which we assume to be a scalar Weyl surface [7,10] in our approach with
suitable modification to take care of the hydrodynamic effects [11] at the surface.
Therefore, the interface free energy is

Finterface = γT

∫
dkρWeyl(k)δ(k − T ), (14)

where γ is a modification sought to be introduced to take care of the plasma (hy-
drodynamical) nature of the droplet and is consciously chosen as

γ =
√

2 ×
√

(1/γg)2 + (1/γq)2, (15)

which is the inverse rms value of the flow parameter of the quarks and gluons,
respectively.

The Weyl density of state is

ρWeyl(k) = (4πR2/16π)k2 , (16)

R being the radius of the droplet.
Therefore,

Finterface =
1
4
R2T 3γ. (17)

The colour degeneracy gi is 6 for quarks and 8 for gluons.
The pion free energy is [9]

Fπ = (3T/2π2)ν
∫ ∞

0

k2dk ln
(
1 − e−

√
m2

π+k2/T
)

. (18)
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Figure 1. Ftotal at γg = 6γq, γq = 1/6 for various temperatures.

For quark masses we use the current (dynamic) quark masses m0 = md = 0 MeV
and ms = 150 MeV, just as in ref. [9].

We can thus compute the total free energy Ftotal as

Ftotal = Fq=u,d,s + Fgluon + Fπ + Fsurface. (19)

4. Interfacial surface tension

With these ingredients we can compute the free-energy change with respect to
both the droplet radius and critical temperature to get a physical picture of the
fireball formation, the nucleation rate governing the droplet formation, the nature
of the phase transition etc. This can be done over a whole range of flow-parameter
values [4]. We exhibit only two most promising scenarios in figures 1 and 2. The
above two cases are most promising as only these among other cases considered
in [4] show a significant positive energy barrier essential, as we shall see later, for
observable droplets to form. Further, only they exhibit formation of droplets with
the observable critical droplet radius of more than a Fermi in size. Apart from
these promising features, the transition temperatures in the band 150 MeV to 170
MeV, which are expected from lattice calculations also occur in these cases.

Figures 1 and 2 are the two most promising scenarios of our model which ex-
hibit measurable droplet of radius of the order of few Fermis, and also significant
barrier heights which control the nucleation rate for droplet formation. The set of
parameters leading to figure 1 seems more realistic because of the bunching of the
respective free energy curves at nearly equal critical droplet radius irrespective of
the transition temperature unlike in figure 2. From the values of the critical free
energies at the corresponding critical fireball radius that can be extracted from fig-
ures 1 and 2, we can compute the surface tension of the fireball using (2) as listed
in tables 1 and 2.
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Figure 2. Ftotal at γg = 8γq, γq = 1/6 for various temperatures.

Table 1. Surface tension of the QGP droplet at γg = 8γq, γq = 1/6.

Tc ΔFc Rc σ
(MeV) (MeV) (fm) (MeV/fm2) σ/T 3

c

150 332.203 3.475 6.568 0.078
160 382.359 3.385 7.966 0.078
170 433.037 3.285 9.580 0.078
190 532.219 3.085 13.350 0.078
210 623.349 2.875 18.004 0.078
230 702.041 2.655 23.776 0.078
250 766.041 2.455 30.343 0.078

Table 2. Surface tension of the QGP droplet at γg = 6γq, γq = 1/6.

Tc ΔFc Rc σ
(MeV) (MeV) (fm) (MeV/fm2) σ/T 3

c

150 943.595 5.835 6.616 0.078
160 1197 5.965 8.031 0.078
170 1494 6.085 9.633 0.078
190 2216 6.275 13.435 0.078
210 3088 6.375 18.140 0.078
230 4059 6.375 23.844 0.078
250 5052 6.275 30.630 0.078
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Figure 3. Variation of S with temperature T at γg = 6γq, γq = 1/6.

It is indeed remarkable that the ratio σ/T 3
c is a constant irrespective of the

transition temperature and the values of the model parameters.

5. Nature of the phase transition and the velocity of sound

Standard thermodynamics gives the following relations:

Entropy S = −(∂F/∂T ), (20)

Specific heat CV = T (∂S/∂T )V , (21)

Sound velocity C2
S = S/CV . (22)

The behaviour of entropy S and the heat capacity CV with temperature indicate
the nature of the phase transition of the system.

After plugging the total free energy (eq. (19)) into these expressions, we evaluate
these quantities for two promising scenarios of our model, the results of which are
displayed in figures 3–8.

Figures 3 and 4 indicate that there exists a very weak discontinuity in the vicinity
of Tc = 160 MeV, in the entropy, which is a first-order thermodynamic variable.
The discontinuity is just of the order of one standard deviation of the entropy
variable and therefore very weak indeed. And as seen in the following temperature
variation of the second-order variable CV (figures 5 and 6), there is absolutely no
discontinuity.
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Figure 4. Variation of S with temperature T at γg = 8γq, γq = 1/6.

Figure 5. Variation of specific heat CV with temperature T at γg = 6γq,
γq = 1/6.

Using the values of S and CV from figures 3–6, we can calculate the velocity of
the sound in the system using eq. (22). It is reassuring to find once again that
the model predicts an almost constant value for this quantity irrespective of the
transition temperature and the model parameters.
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Figure 6. Variation of specific heat CV with temperature T at γg = 8γq,
γq = 1/6.

Figure 7. Variation of velocity of sound squared C2
S with temperature T at

γg = 6γq, γq = 1/6.

6. Conclusions

In tables 1 and 2 the surface tension is seen to increase with the critical temperature
of the fireball, which is a beautiful demonstration of a QCD effect. As the critical
temperature of the QGP droplet increases, the shear forces on the fireball surface
will also increase tending to tear the surface quarks apart, consequently, bringing
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Figure 8. Variation of velocity of sound squared C2
S with temperature T at

γg = 8γq, γq = 1/6.

into play the confining property of the QCD forces manifesting itself in increased
surface tension, which is exactly what the calculations show. It has to be kept in
mind that our model does not fix the critical temperature of transition, but only
deals with all possible candidate critical temperatures out of which possibly, only
one will be chosen by nature. Of course, this is not surprising as the confining
feature of QCD has been incorporated in (4), but it is nevertheless very interesting
that it shows up in the behaviour of the surface tension. Another striking feature of
the result is the independence of the QGP droplet surface tension σ to variations in
the flow parameters of the model and it varies with only the critical temperature,
in the lowest order approximation we have employed.

The constancy of the ratio σ/T 3
c indicates a cubic critical temperature depen-

dence of the surface tension of the interfacial separation between the two phases.
This is in striking conformity with the results of lattice QCD simulations [12]. It is
also heartening to note that for Tc ∼ 156 MeV, σ1/3 ∼ 67 MeV in our model which
is exactly the value estimated in a MIT bag model calculation [13].

The graphs (figures 3–6) clearly indicate that the model predicts a weakly first-
order transition at a temperature in the range (160±5) MeV, which seems to be
consistent with current expectations of QGP–hadron phase transition [1]. The
phase transition has to be characterised as weakly first-order as the discontinuities
occurring in the first-order thermodynamic quantities are just about one standard
deviation from the values of the quantities on the ordinates, namely the entropy S
in figures 3 and 4.

The independence of the velocity of sound in the QGP system (figures 7 and
8), from both the values of the model flow parameters as well as the magnitude
of the transition temperature is remarkable. The value of the velocity of sound is
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consistently predicted to be of the order of (0.27± 0.02) times the velocity of light
in vacuum. The value for the velocity is in excellent agreement with recent model
calculations [14], as well as with lattice simulations that include dynamical quarks
[15], but as should be expected, it is at variance with pure gauge lattice results [16].
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