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In this article, a modified version of frame called frame associated with a sequence of scalars (FASS) is defined. This modified
version of frame is used to study quantum measurements. Also, using FASS, some Naimark-type results are obtained. Finally, a
formula to give the average probability of an incorrect measurement using FASS is obtained.

1. Introduction

Dufhin and Schaeffer [1] formalised the definition of frames
for Hilbert space in 1952 to examine some challenging issues
involving nonharmonic Fourier series. In order to explore
signal processing, Duffin and Schaeffer essentially abstracted
the basic Gabor concept. However, until the seminal study
by Daubechies et al. [2] in 1986, it did not seem that the con-
cepts of Duflin and Schaeffer attracted much attention out-
side of the nonharmonic Fourier series. Although not to
the level of the extremely quick growth of wavelets, the idea
of frames started to be researched more extensively after this
groundbreaking breakthrough. Frames have historically
been utilised in sampling theory, data compression, image
processing, and signal processing. The theory is now being
used in a growing number of fields, including filterbanks,
optics, signal detection, and the study of Besov spaces and
Banach space theory.

Let 7 denote a separable Hilbert space equipped with
inner product (-, -). A sequence {f,} >, of elements in #
is called a frame for %, if there exist positive constants C
and D such that

ClfII* < Z |(Ff ) <D|f|]* forallf e . (1)

The scalars C and D are called frame bounds and they
are not unique. If C=D, the frame {f,} ", is called a tight

n=1

frame, whereas if C = D = 1, the frame { f , } is called a Parseval
frame. For the frame {f,}°, the inequality in (1) is

known as the frame inequality. The operator I : €*(IN)
—> J defined by

T{bi}2, = D bifs (2)
k=1

is called the preframe operator or the synthesis operator,
and its adjoint operator T * : % — ¢*(N) is called the
analysis operator which is given by

T () ={{ffi)} forall f e 7. (3)

Composing the operators J and J*, we obtain
another operator called the frame operator S =T : H
— & which is given by

(o)

S(f)= Y (f-fi)fiforallf e 7. (4)

k=1

The frame operator & is a positive, self-adjoint, and invert-
ible operator on #. Thus, the reconstruction formula for all
f € is given by
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fos87f= Z SIS ( §<f,s'1fk>fk>. (s)

k=1

For more details related to frames and some of their gen-
eralizations, one may refer to [3-8].

Eldar and Forney [9] investigated the connection between
tight frames and rank-one quantum measurement. Addition-
ally, they described frame matrices by comparing them to the
measurement matrices of quantum mechanics. They extended
tight frames to orthonormal bases utilising Neumark’s
theorem [10, 11]. They constructed the optimal tight frames
by drawing inspiration from least squares measurement of
quantum mechanics. In this study, we demonstrate various
Naimark-type results and derive a formula to calculate the
average probability of an incorrect measurement when utilis-
ing FASS.

2. Frames Associated with a Sequence of Scalars

We begin this section by defining a modified version of
frame called frame associated with a sequence of scalars.
Definition 1. Let N = | J)?, P,,, where P; are finite subsets of N
with P, N P; = ¢ for all i # j, and let {yn} be any sequence of
scalars. A sequence {x,} in Hilbert space # is called a frame
associated with a sequence of scalars with respect to (P,, u, ), if
there exist constants A; and A, (0 < A; < A, < 00) such that

V<A, [|x|* forallx e 7. (6)

DTS

n=1 jeP,

IfA;=A,, then {x,} is called a tight frame associated with
a sequence of scalars with respect to (P,,u,). If Aj=A, =1,
then {x, } is called a Parseval frame associated with a sequence
of scalars with respect to (P,, i,,).

It should be noted that {x,} is a FASS for % associated
with a sequence of scalars with respect to (P,,, ,,) if and only
if {{px; iePn}:: is a frame for Z.

Definition 2. Let {P,}, be a sequence of subsets of N as
defined in Definition 1. For an orthonormal basis {e,} of
€2, let us consider

o
oo
I

{ Z aje; s o;are scalarsand n € ]N},
f

JjEP,
2
> o6,
nelN 2

One may observe that €5 ,n € N are subspaces of ¢*. An

n

{{un}: u, € {’,}2," and Z llu,|)* < oo}
n=1
(7)

inner product defined on (), ® Ef)n) is given by

eZ
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{ua}> {va}) = 2 n)> for {u, b, {v, } € <ZNNZ> :

(8)

One can handily corroborate that (Y, ® ¢ Jp s 2
Hilbert space.
It can easily be substantiated that the operator

Tyt (Tpen @8, ), —  given by

({ZM } ) = iZu,-xi (9)

is bounded and is called the synthesis operator of the
frame {x,} associated with a sequence of scalars {u,}.
Also, the bounded operator T : & —>(Zn€]NGB{’,%,n)zz

given by

T p(x) = { > (% Wﬂ-)ei} (10)

i€P, n=1
is called the analysis operator of the frame associated with a
sequence of scalars {y,}. By composing operators J 5 and
T3 we obtain frame operator Sp=9I ;T H — H
given by

M8

x’ HiX; Auz i Z Z |[’li|2<x’xi>xi' (11)

ieP n=1i€P,

n

I
—_

n

Let {x,} be a frame associated with a sequence of
scalars {y,}. Let T and T be synthesis and analysis
operators, respectively, and let &5 be the frame operator
of the frame {x,}. One may promptly observe that

Sy Sp=10=83'T T} (12)

Therefore, we have T =T 585 T 3T 5. So, 85T g is
the pseudoinverse of I ;, and 7 *& 5 T is a projection
from (3N 69?.12,”)(2 onto I ().

If {x, } is a Parseval frame for # with respect to (P, u,,),
then 7 3T ; = I; that is, T is isometry.

Given a Parseval frame {x,} for # with respect to
(P, u,), the following result establishes that there exist a
Hilbert space # containing # and an orthonormal frame
{y,} for Z with respect to (P,, ) such that the orthogonal
projection of y, onto # is x, for each n. One may observe
that (Proposition 1.1 in [12]) a classic result in frame theory
is closely related to Theorem 3.

Theorem 3. Let {x,} be a Parseval frame associated with a
sequence of scalars for F with respect to (P,,u,), where
scalars y,, are nonzero. Then, there exist a Hilbert space & with
 as a subspace of K and an orthonormal frame {y,} associ-
ated with a sequence of scalars for F with respect to (P, u,)
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such that Pg(y,) =
from F onto .

X, for all n € N, where Py, is a projection

Proof. Let & = @ kerJ y and Pz be orthogonal projec-
tion from (3, . @ l’,%,n)}32 onto kerJ . Define y, =x; + (1/u;)
Pig,(6) € X =H dkerTp, xe€F, and v={}p vie;}
€ kerJ ;. Further, define Zp: H — (Y ,en GB(Z%"){Z as

gB(er)z{z<x$v’Miyi>}' (13)

i€P,

This gives
[ee]
1Zs(x @) ZZI#;\I’W )’ +ZZ|V1|
n=1 n=1i€P,
=II9§(X)II +lvIP® (14)
= [I[1” + {1
=|x®v|>

Thus, &5 is an isometry that is Z;Z;=1,4. Also,
we know that Qz=1-9 3,9, is a projection from
Y@t ) onto kerdp. And we have

1
(uyomy;) < x+—QB ))’P‘j<"j+;QB(ej)>>
]

= (Wi 1 J> +(Qs(e), Qs (e)))

3. Quantum Measurement

According to the well-known spectral theorem, the
projection-valued measures (PVMs) or spectral measures
correlate one to one with the self-adjoint operators. In con-
ventional quantum mechanics, quantum observables are
represented by PVMs. PVMs are defined in [9, 13-16] as
follows.

3.1. Projection-Valued Measure (PVM). A PVM on Hilbert
space # is any set of operators {E, } on & which satisfies
the following:

(i) Each operator E,, is a self-adjoint projection for all
nelN

(i) E,E; =0, i#]
(iii) Y, =1,

Let %(X) be a o-algebra of the subsets of a locally com-
pact space X and Z (%) be the set of bounded operators on
Hilbert space #. A positive operator-valued measure
(POVM) is a function IT : B(X) — ZL(H) such that

(i) For all Ue B(X),
operator

(ii) IT(¢)=0
(iii) For all disjoint subsets {U,}-; C

II(U) is a positive self-adjoint
RB(X), we have

ogo) g

i=1

(iv) II(X) = Iy

The representation of quantum observables by POVMs is
found to be more appropriate than by spectral measures. In
1940s, POVMs were defined to study some extensions of oper-
ators (symmetric). Later, around 1970s, POVM:s were used as a
tool to describe the quantum measurements. It was observed
that POVMs are an extension of quantum observable that are
embodied by a spectral measure (PVMs). Presently, POVMs
are used as a basic tool in the study of quantum information
theory [17] and quantum optics. In [18], Ali studied certain
geometrical properties of POVM, defined on the Borel sets of
locally compact space X, taking values in the set of all bounded
operators on a separable Hilbert space. In terms of POVM for
observables, a thorough examination of the basic ideas of
quantum theory as well as current experiments connected to
it is presented in [19]. The broad statistical (convex) approach
framework in [20] presents a purely statistical characterization
of measurements of observables (characterized by spectral mea-
sures in standard quantum mechanics formalism). In [21],
Prugovecki studied the stochastic quantum mechanics. The
necessity of using non-normalized POVM is also described in
order to understand the idea of quantum localization in space-
time. POVM is precisely defined in [13, 14, 22] as follows.

3.2. Positive Operator-Valued Measure (POVM). A POVM
on Hilbert space # is any set of operators {E, } on & which
satisfies the following conditions:

(i) Each operator E,, is positive, for all n € N
(ii) Z(nX:)IEn = I?’K

The quantum observables delineated by POVMs are like
a generalization of the basic or standard quantum observ-
ables. So POVMs are generally called unsharp observables

85U8017 SUOWIWOD aA 81D 8(deol|dde ay) Aq peusenob afe sop e WO 8N Jo s 10} ArIq1T 8UlUQ /8|1 UO (SUONIPUOD-PUE-SWIIL0D A8 | 1M Afelq 1 BulUO//SdNY) SUONIPUOD Pue SWis 1 81 88S *[202/2T/20] o AriqiTauliuo AB|IM * YIusney M AluS Aq T9E88S8/y20Z/SSTT 0T/10p/wod A3 |m Aselqjpuljuoy/sdny wouy pepeojumod ‘T ‘#7202 ‘0E6



or generalized observables. A very important result which
discusses the interconnection between POVMs and PVMs
is the Naimark dilation theorem. However, its interpretation
from physical perspective is not very clear, and so there is
some awkwardness in interpreting the Hilbert space 7.

It is well known that a Parseval frame defines a POVM
(see, for example, [23]). For the convenience of the reader,
we state and prove this result in the particular case of Parse-
val frames associated with a sequence of scalars.

Theorem 4. Let {x,} be Parseval frame associated with a
sequence of scalars for I with respect to (P,,u,), and let
E,(x) = Yicp, (%, pix;)p;x; foralln € N. Then, {E,} is a
POVM on 7.

Proof. First, we show that each E, is a positive operator. For
x € I, we obtain

o px) | 2

i€P,

(En(x),x) = <2P: (%, pix; ,u,x,,x>

(17)

To establish the completeness relation, let x € #Z. Then,

o0
Z X, i) X = Z Z |P‘i|2<x> X;)X; = X.

ieP, n=1ieP,
(18)

M8
HM8

=
I
—_

In the following result, we show that POVM in a Hilbert
space can give rise to a Parseval frame associated with a
sequence of scalars for 7. O

Theorem 5. Let II be a POVM on a Hilbert space Z. Then,
there exist a disjoint partition {P,} of N with P, finite for all
n € N and a sequence of scalars {u,} and a sequence {x,} in
F such that {x,} is a Parseval frame associated with a
sequence of scalars for % with respect to (P, u,).

Proof. Let {P,} be disjoint partitions of IN with P, finite for
all n € N. Note that IT(P,) is positive and self-adjoint oper-
ator. So, in view of the spectral theorem of positive operator,
there exists an orthonormal set {Vj}jeP in #Z and positive

numbers {& j}jE »

)= D &im vy —Z<x’ \/gj"j>\/gj"f' (19)

JjepP, JjepP,

such that for all x € #, we have

But N =J,P,, and so, we obtain

o)

II
M8

I(P,)(x).  (20)

=
Il
—

Journal of Function Spaces
Taking x; = v; and g, = \/E,, for i € N, we get

Zx‘ull‘ul ZZ“AI (%, x;)x;, forallx € .
i<P, n=1ieP,
(21)

We shall now prove Naimark-type results using frames
associated with a sequence of scalars. More precisely, we
prove that an orthonormal frame associated with a sequence
of scalars represents projection-valued measure in Hilbert
spaces. 0

|I
il M8

Theorem 6. Let {x,} be an orthonormal frame associated
with a sequence of scalars for I with respect to (P, u,,). Also,
let E,(x)=Ycp (%, px;)p;x;, for n€N. Then, {E,} is a
projection-valued measure on ¥ .

Proof. Tt is clear that E,, is self-adjoint for n € N and

x) = Z Z (%, px; ) pyx;, forall x € . (22)

n=1ieP,

=

I
Mg

t

=
Il
—

We are now left to show that E,, is a projection for n € N.
Let x € Z. Then, we have

Ey(x)= ) (En(x

i€P,

= 2 X (oomy) (e Yo

i€P, jeP, (23)

= Z (% pX; ) ;X

i€P,

=E,(x).

)> Mixi>[”lixi

Finally, we show that a Parseval frame associated with a
sequence of scalars can also give a PVM through dilation
theorem. O

Theorem 7. Let {x,} be a frame associated with a sequence
of scalars for Z with respect to (P,, u,). Then, there exist a
Hilbert space K with I as a subspace of ¥, {y,} < K with
Py (y,) =x,, for all n € N, and a sequence of operators {F,}
on K such that {F,} is a projection-valued measure on %,
where Py, is a projection from K onto # and F,(y)=

Yiep, 0ruyuy, fory e X.
Proof. Proof follows from Theorem 3 and Theorem 6. [

A quantum system in a pure state is characterized by a
normalized vector y in a Hilbert space #. Information
about a quantum system is extracted by subjecting the sys-
tem to a measurement. In quantum theory, the outcome of
a measurement is inherently probabilistic, with the probabil-
ities of the outcomes of any conceivable measurement deter-
mined by the state vector y € . Now, we will show how
Parseval frame associated with a sequence of scalars can be
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used in quantum measurement. Let {x,} be Parseval frame
associated with a sequence of scalars for # with respect to
(P, ;). Take E, (x) = Yyep (x pix;)p;x;, for x € Z. Suppose
the measurement is performed upon a quantum system in
a pure state y. Then, the probability of the n outcome is
given by

Z| 1//’”1 1

i€P,

p(n)=<vf’Enw>=<w PRV >

(24)

Moreover, one can notice that

ZZI%MHI =)’ =1. (25)

n=1i€P,

HM8

Let {y,} be unit normed states in Hilbert space % with
corresponding probabilities {p,} that sum to 1. If the state of
the system is y,, for i € N, then the measurement provides us
the information that the system is in the i state with high
probability of p(j), given by

O =(voEpy=4 " T (26)
PUI=We BV =1 ifi4].

The probability that the output of our measurement
device will be j is (y;, E;y;) if the state of the system state

is y,. Consequently, (y,, E;y;) is the probability of correct
measurement. Since each y; occurs with probability p;, the

average probability of a successful measurement is

&(success) = & ({(y, E:(yv:)) 1)

= ;PKW:’ 1(%)) (27)
=; -kZ|<%kak>\2~

Thus, the average probability of incorrect measurement
is given by

pe=1-) pi(v, Ei(v)) —1—ZP12|% wx) - (28)

i=1 i=1  keP;

Note that the probability that we measure the system
erroneously to be y; is (v, E;(y;)) if the state of the system
is y, for i € N and i # j. Hence, the following relation yields
the average probability of an inaccurate measurement:

5
& (incorrect) = ({1//1, }l#]
= Zpi<vf,» > <wi>#kxk>ukxk> (29)
i#j keP;
=2 P D 1o i)
i#j  keP;

Next, we use a frame associated with a sequence of sca-
lars for # with respect to (P,, y,) to provide the average
probability of an inaccurate measurement.

Theorem 8. Let {v,} be unit normed states in Hilbert space
F with corresponding probabilities {p,} that sum to 1 and
{x,} be Parseval frame associated with a sequence of scalars
for I with respect to (P,, u,). Then, the average probability
of an incorrect measurement is given by

=Y Y e (30)

i=1  keP;

& (incorrect) =

Proof. We know that

2 PV E; v =Y Pl Ei(v)

1//1 >+ sz 1//1’

i#j ielN i,j€eN
= ZPi<‘/’i’ zEj(‘/’i)>
i€N jeN
= ZPiW’p y)=1
i€eN

(31)

Thus, we obtain

_1_Zptz|W1’kak . (32)

i=1  keP;

& (incorrect) =
O

4. Conclusion

Positive operator-valued measures (POVMs) have long been
the subject of the study. Later, POVMs were used as a tool to
delineate the quantum measurements. According to the
Naimark dilation theorem, POVMs are seen as an extension
of a quantum observable that is represented by spectral mea-
sures (or PVMs). POVMs are currently employed in the
research of quantum information theory and quantum
optics as a basic tool. In this article, we proved various
Naimark-type results using frames associated with a
sequence of scalars. The average probability of an incorrect
measurement is then obtained using a frame associated with
a sequence of scalars.

Data Availability

No data were used to support this study.
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