Materials Letters 253 (2019) 222-225

Contents lists available at ScienceDirect

Materials Letters

journal homepage: www.elsevier.com/locate/mlblue

Swift heavy-ions irradiated nano-magnetite/exfoliated-nanographite/ polymethylmethacrylate nanocomposites with excellent microwaveabsorption performance

Prachi Yadav^a, Sunita Rattan^{a,*}, Ambuj Tripathi^b, Sandeep Kumar^{c,d}

^a Amity Institute of Applied Sciences, Amity University, Noida, Uttar Pradesh 201303, India

^b Inter-University Accelerator Centre (IUAC), Aruna Asaf Ali Marg, New Delhi 110067, India

^c Magnetics and Advanced Ceramics Lab, Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India

^d Department of Physics, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi 110075, India

ARTICLE INFO

Article history: Received 28 May 2019 Received in revised form 12 June 2019 Accepted 15 June 2019 Available online 17 June 2019

Keywords: Polymer nanocomposites Swift heavy-ion irradiation Complex permeability Complex permittivity Reflection loss

ABSTRACT

In this work, a new method (swift heavy-ion (SHI) irradiation) has been adopted to develop the light-weight nano-magnetite/exfoliated-nanographite/polymethylmethacrylate (Fe₃O₄/NG/PMMA) nanocomposites with strong and broadband MW absorbing characteristics. The effects of SHI [C⁶⁺(80 MeV) and O⁷⁺(100 MeV)] irradiation on MW-absorbing properties of Fe₃O₄/NG/PMMA nanocomposites were investigated in 2–18 GHz frequency range. Irradiated nanocomposites demonstrated better homogenization of nanofillers, lower saturation magnetization, higher coercivity, stronger MW-absorption and higher effective bandwidth of absorption. Nanocomposites irradiated with O⁷⁺(100 MeV) ions at fluence of 1 × 10¹² ions/cm² exhibited a minimum reflection loss (*R*_{Lmin}) of –32.4 dB (99.94% MW-absorption) and broad bandwidth (for *R*_L ≤ –10 dB) of ~6.8 GHz.

© 2019 Published by Elsevier B.V.

1. Introduction

The extensive use of microwaves (MWs), both in civilian and military applications, has generated the serious problems of MW pollution and electromagnetic interference (EMI) [1,2]. MWabsorbing materials have received tremendous attention because of their ability in curbing unwanted MW radiation and shielding against EMI. Moreover, MW-absorbers are critical for military applications in reducing radar signatures [3–7]. The low-cost light-weight polymer nanocomposites (NCs) with strong and broadband absorptions are in great demand for highperformance MW-absorbing applications. Nanoscale magnetite (Fe₃O₄) is an excellent filler in polymer matrices owing to its strong magnetic properties [1-5]. The low-cost, low-density, easyprocessing, large dielectric loss, and high mechanical strength of exfoliated nanographite (NG) makes it a promising dielectric MW-absorber [1,8]. The concurrent dielectric and magnetic losses through compositing of Fe₃O₄ nanoparticles and NGs in polymethylmethacrylate (PMMA) matrix can produce excellent MWabsorption results [1,8]. It is hard to achieve strong and wideband MW-absorption performances simultaneously due to impover-

https://doi.org/10.1016/j.matlet.2019.06.053 0167-577X/© 2019 Published by Elsevier B.V. defects, stress and structural disorders [9,10]. In this work, we report influences of SHI irradiation on MW-absorbing properties

of melt-blended Fe₃O₄/NG/PMMA NCs for the first time. This unique and effective technique (SHI irradiation) attains strong (–32.4 dB) and broadband (~6.8 GHz) MW-absorption in irradiated NCs.

ished solubility of nanofillers in polymer matrices and poor impe-

been successfully implemented in modification of material proper-

ties (i.e., dielectric, magnetic, sensing etc.) by inducing controlled

In literature, swift heavy-ion (SHI) irradiation technique has

2. Material and methods

dance matching of NCs.

Exfoliated NGs were prepared through a three-step process as described in literature [8]. Fe_3O_4 nanoparticles were processed through a solution combustion method using $Fe(NO_3)_3 \cdot 9H_2O$ as starting raw material [11]. After dissolving $Fe(NO_3)_3$ in deionized water, citric acid was added to solution for preventing precipitation of metal-cations. Glycine was added to precursor solution, after pH neutralization, to fuel the reaction. Solution was then heated at ~180 °C under magnetic stirring to produce a brownish and fluffy product. As-obtained product was calcined at ~600 °C for 2 h to acquire Fe_3O_4 phase. To prepare $Fe_3O_4/NG/$

^{*} Corresponding author. E-mail address: srattan@amity.edu (S. Rattan).