14. Time Reversal Test and Factor Reversal Test

Essential Readings

- Croxton, Fredrick E, Cowden, Dudley J. and Klein, S. (1973): Applied General Statistics, 3rd edition, Prentice Hall of India Pvt. Ltd.
- Gun, A.M., Gupta, M.K. and Dasgupta, B. (2008). Fundamentals of Statistics, Vol. II, 9th Ed., World Press, Kolkata.
- Gupta, S.C. and Kapoor, V.K. (2014). Applied Statistics, 11th Ed., Sultan Chand.

Suggestive Reading

- Allen R.G.D. (1975): Index Numbers in Theory and Practice, Macmillan
- Mukhopadhyay, P. (1999). Applied Statistics, New Central Book Agency, Calcutta.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

GENERIC ELECTIVES: BASIC STATISTICS

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title	Credits	Credit distribution of the course			Eligibility	Pre-requisite of
& Code		Lecture	Tutorial	Practical/	criteria	the course
				Practice		(if any)
Basic					Class XII	
Statistics	4	3	0	1	pass with	NIL
					Mathematics	

Learning Objectives

The Learning Objectives of this course are as follows:

- To summarize the data and to obtain its salient features from the vast mass of original data.
- To understand the concepts of probability and its applications.
- To understand the concept of random variables, probability distributions and expectation...

Learning outcomes

After completion of this course, the students will be able to:

- Apply the concepts of statistical population and sample, variables and attributes.
- Present tabular and graphical representation of data based on variables.
- Measures of central tendency, Dispersion, Skewness and Kurtosis.
- Employ moments and their use in studying various characteristics of data.
- Employ correlation and regression analysis of bivariate data.

SYLLABUS OF GE

Theory

Unit - 1 (15 hours)

Elementary Statistics

Concepts of a statistical population and sample from a population, quantitative and qualitative data, nominal, ordinal and time-series data, discrete and continuous data. Presentation of data by tables and by diagrams, frequency distributions for discrete and continuous data, graphical representation of a frequency distribution by histogram and frequency polygon, cumulative frequency distributions (inclusive and exclusive methods).

Unit - 2 (15 hours)

Descriptive Statistics

Measures of location (or central tendency) and dispersion, moments, measures of skewness and kurtosis, cumulants. Bi-variate data: Scatter diagram, principle of least-squares and fitting of polynomials and exponential curves.

Unit - 3 (15 hours)

Correlation and Regression

Bivariate data: Definition, scatter diagram, simple, partial and multiple correlation (3 variables only), rank correlation. Simple linear regression, principle of least squares and fitting of polynomials and exponential curves.

Practical - 30 Hours

List of Practicals:

- 1. Problems based on graphical representation of data.
- 2. Problems based on measures of central tendency using raw data, grouped data and for change of origin and scale.
- 3. Problems based on measures of dispersion using raw data, grouped data and for change of origin and scale.
- 4. Problems based on combined mean and variance and coefficient of variation.
- 5. Problems based on Moments using raw data, grouped data and for change of origin and scale
- 6. Problems based on relationships between moments about origin and central moments.
- 7. Problems based on Skewness and kurtosis.
- 8. Problems based on Karl Pearson correlation coefficient (with/without change of scale and origin).
- 9. Problems based on Lines of regression, angle between two lines of regression
- 10. Problems based on Spearman rank correlation.
- 11. Fitting of polynomials and exponential curves.

Essential Readings

Goon, A. M., Gupta, M. K. and Dasgupta, B. (2003). An Outline of Statistical Theory (4th ed., Vol. I). World Press, Kolkata.

- Gupta, S. C. and Kapoor, V. K. (2021). Fundamentals of Mathematical Statistics (60th ed.). Sultan Chand and Sons.
- Hogg, R. V., Craig, A. T. and Mckean, J. W. (2005). Introduction to Mathematical Statistics (6th ed.). Pearson Education.

Suggestive Reading

- Miller, I. and Miller, M. (2006). John E. Freund's Mathematical Statistics with Applications, 7th Ed., Pearson Education, Asia
- Elhance, D. N., Elhance, V. and Agrawal, B. M. (2021), Kitab Mahal

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.