River Publishers Series in Mathematical and Engineering Sciences

AN INTRODUCTION TO TENSOR ANALYSIS

Bipin Singh Koranga and Sanjay Kumar Padaliya

AN INTRODUCTION TO TENSOR ANALYSIS

Dr. Bipin Singh Koranga

M.Sc., Ph.D. (IITB), MIPA,

Department of Physics,

Kirori Mal College, Delhi

Dr. Sanjay Kumar Padaliya

M.Sc., Ph.D. (K.U), Department of Mathematics, SGRR (PG) College, Dehradun, India

Published, sold and distributed by: River Publishers Alsbjergvej 10 9260 Gistrup Denmark

www.riverpublishers.com

ISBN: 978-87-7022-581-6 (Hardback) 978-87-7022-580-9 (Ebook)

©2020 River Publishers

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise, without prior written permission of the publishers.

About the Authors

This book presents basic introduction of tensors with an emphasis on the understanding of the fundamentals. It develops an appreciation of the tensor application in both undergraduate and post graduate students of Physics and Mathematics.

Bipin Singh Koranga is a graduate from Kumaun University, Nainital. He has been with the Theoretical Physics Group, IIT Bombay since 2006 and received the Ph.D. degree in Physics (Neutrino Masses and Mixings) from the Indian Institute of Technology Bombay in 2007. He has been teaching basic courses in Physics and Mathematical Physics at the graduate level for the last 12 years. His research interests include the origin of universe, Physics beyond the standard model, theoretical nuclear Physics, quantum mechanical neutrino oscillation and few topics related to astrology. He has published over 42 scientific papers in various International Journals. His present research interest includes the neutrino mass models and related phenomenology.

Sanjay Kumar Padaliya is presently Head, Department of Mathematics, S.G.R.R. (P.G) College, Dehradun. He received his Ph.D. degree in Mathematics (Fixed Point Theory) from Kumaun University, Nainital. He has been teaching basic courses in

AN INTRODUCTION TO TENSOR ANALYSIS

Bipin Singh Koranga and Sanjay Kumar Padaliya

The subject of Tensor Analysis deals with the problem of the formulation of the relation between various entities in forms which remain invariant when we pass from one system of coordinates to another. The invariant form of equation is necessarily related to the possible system of coordinates with reference to which the equation remains invariant. The primary purpose of this book is the study of the invariance form of equation relative to the totally of the rectangular co-ordinate system in the three-dimensional Euclidean space. We start with the consideration of the way the sets representing various entities are transformed when we pass from one system of rectangular co-ordinates to another. A Tensor may be a physical entity that can be described as a Tensor only with respect to the manner of its representation by means of multisuffix sets associated with different system of axes such that the sets associated with different system of co-ordinate obey the transformation law for Tensor. We have employed suffix notation for tensors of any order, we could also employ single letter such A.B to denote Tensors.

River Publisher

For UPSC and State Civil Services Examinations

Ajeet Jha

Editor—Acquisitions: Sharel Simon *Editor—Development:* Ruchira Dash *Editor—Production:* Vipin Kumar

The aim of this publication is to supply information taken from sources believed to be valid and reliable. This is not an attempt to render any type of professional advice or analysis, nor is it to be treated as such. While much care has been taken to ensure the veracity and currency of the information presented within, neither the publisher, nor its authors bear any responsibility for any damage arising from inadvertent omissions, negligence or inaccuracies (typographical or factual) that may have found their way into this book.

Copyright © 2020 Pearson India Education Services Pvt. Ltd

No part of this eBook may be used or reproduced in any manner whatsoever without the publisher's prior written consent.

This eBook may or may not include all assets that were part of the print version. The publisher reserves the right to remove any material in this eBook at any time.

ISBN: 978-93-534-3837-1

eISBN: 978-93-539-4143-7

First Impression

Published by Pearson India Education Services Pvt. Ltd, CIN: U72200TN2005PTC057128.

Head Office:15th Floor, Tower–B, World Trade Tower, Plot No. 1, Block–C, Sector–16, Noida 201 301, Uttar Pradesh, India. Registered Office: The HIVE, 3rd Floor, Metro zone, No 44, Pilliayar Koil Street, Jawaharlal Nehru Road, Anna Nagar, Chennai, Tamil Nadu 600040. Phone: 044-66540100 Website: in.pearson.com, Email: companysecretary.india@pearson.com

About the Author

Ajeet Jha is an Assistant Professor in History at Kirori Mal College, University of Delhi. He obtained his Post-Graduate and PhD degree from the Department of History, University of Delhi. He has been a dedicated teacher in addition to his relentlessly pursued research, which resulted in publication of his articles in reputed journals and proceedings. He has recently co-authored a book, titled *Changing Complexions of Delhi: A Study of Jhuggi-Jhopadi Clusters and Cultural Transition*, which was a part of Delhi University Innovation Project. His other areas of interest include Religion, Regional History and Culture.

Chemical Science Review and Letters

NAAS Rating 4.75 | International Chemistry Journal | E Journal of Chemistry | Biochemistry | Agricultural Chemistry Journal | Soil, Nutrition, Food Science | Chem Sci Rev Lett |

Green Inhibitors for Mitigation of Corrosion of Metals

Article Views: 642

Status: Submission for New Chapters is OPEN

Recently accepted chapter.

- 1. Green Inhibitor: A Potential Future Environmental Compatible Alternative for Mitigation of Corrosion by Arun Kant, Panmei Gaijon, Sudipta Ghosh and M. Ramananda Singh.
- 2. Amino Acid Derivatives as Inhibitors for Acid Corrosion of Mild Steel by R. Maheswari.

Related

Thermodynamic study of Green Corrosion Inhibitor on Mild Steel with Aqueous Extract of Ziziphus Quantum Chemical Study of Some Antihistamines as Inhibitors Corrosion for Copper in Nitric Acid Solution Using DFT Method Biochemical Variability study in Genotype and Isolate of Alternaria Blight in Pigeonpea

11/9/21, 8:02 AM Gree	Green Inhibitors for Mitigation of Corrosion of Metals – Chemical Science Review and Letters		
Jujuba Stem and Fruits in 1M HCl	Quantum Chemical Study of Some	Biochemical Variability study in	
Solution	Antihistamines as Inhibitors	Genotype and Isolate of Alternaria	
Thermodynamic Study of Green	Corrosion for Copper in Nitric Acid	Blight in Pigeonpea Laxman	
Corrosion Inhibitor on Mild Steel	Solution Using DFT Method M. A.	Prasad Balai, R B Singh, Asha	
with Aqueous Extract of Ziziphus	Tigori1*, A. Kouyate1, V. Kouakou2,	Sinha and S M Yadav Keywords:	
Jujuba Stem and Fruits in 1M HCl	February 26, 2020	January 23, 2020	
Solution Rakesh Kumar Dubey1,	In "Issue 33"	In "Issue 33"	
January 14, 2020			
In "Issue 33"			

8) आति की घटनाये अपनी ताल्कालिक परिस्थितियों असे चलक साह वे इतिहास बनती हैं, तो जरतावी सार 18 पर निर्मन रोता है। इतिहास केंबल यंथ्यों में ही नहीं होते विधालन एक संरक्षित प्रधान है। यह वास्तव क आम लोगों अपने निर्दाहता इतिहास की सीमा सामन्यना जिड्टानी तक र्य है। आणि की उ

त्र में तैवानिक सारखों, तकों के ताखार पर इसिरारन को सम्याने हुई है। इसरने घूरे की एसिसालिक साराधार बरतकी दिखा रही है, सद्वीप के स्वरूप्त क्या को पुराणी में रण्डकरण्या कहा माल है। प्राची-न ताकारक, साएकूट, मायव साप्तारकों के उसीन रहा है। इसके 1

विज्ञान संस्थानम्-विक्षान भार। जन्म राम्प्रित-पर्ल्ड आयुर्वेद न

(गोंडवाना गणराज्य का ऐतिहासिक विवेचन)

अचल पुलस्तेय

महान गणराज्य-गढ़मण्डला

(गोंडवाना गणराज्य का ऐतिहासिक विवेचन)

Chemical Science Review and Letters

NAAS Rating 4.75 | International Chemistry Journal | E Journal of Chemistry | Biochemistry | Agricultural Chemistry Journal | Soil, Nutrition, Food Science | Chem Sci Rev Lett |

Green Inhibitors for Mitigation of Corrosion of Metals

Article Views: 642

Status: Submission for New Chapters is OPEN

Recently accepted chapter.

- 1. Green Inhibitor: A Potential Future Environmental Compatible Alternative for Mitigation of Corrosion by Arun Kant, Panmei Gaijon, Sudipta Ghosh and M. Ramananda Singh.
- 2. Amino Acid Derivatives as Inhibitors for Acid Corrosion of Mild Steel by R. Maheswari.

Related

Thermodynamic study of Green Corrosion Inhibitor on Mild Steel with Aqueous Extract of Ziziphus Quantum Chemical Study of Some Antihistamines as Inhibitors Corrosion for Copper in Nitric Acid Solution Using DFT Method Biochemical Variability study in Genotype and Isolate of Alternaria Blight in Pigeonpea

11/9/21, 8:02 AM Gree	Green Inhibitors for Mitigation of Corrosion of Metals – Chemical Science Review and Letters		
Jujuba Stem and Fruits in 1M HCl	Quantum Chemical Study of Some	Biochemical Variability study in	
Solution	Antihistamines as Inhibitors	Genotype and Isolate of Alternaria	
Thermodynamic Study of Green	Corrosion for Copper in Nitric Acid	Blight in Pigeonpea Laxman	
Corrosion Inhibitor on Mild Steel	Solution Using DFT Method M. A.	Prasad Balai, R B Singh, Asha	
with Aqueous Extract of Ziziphus	Tigori1*, A. Kouyate1, V. Kouakou2,	Sinha and S M Yadav Keywords:	
Jujuba Stem and Fruits in 1M HCl	February 26, 2020	January 23, 2020	
Solution Rakesh Kumar Dubey1,	In "Issue 33"	In "Issue 33"	
January 14, 2020			
In "Issue 33"			

Chemical Science Review and Letters

NAAS Rating 4.75 | International Chemistry Journal | E Journal of Chemistry | Biochemistry | Agricultural Chemistry Journal | Soil, Nutrition, Food Science | Chem Sci Rev Lett |

Green Inhibitors for Mitigation of Corrosion of Metals

Article Views: 642

Status: Submission for New Chapters is OPEN

Recently accepted chapter.

- 1. Green Inhibitor: A Potential Future Environmental Compatible Alternative for Mitigation of Corrosion by Arun Kant, Panmei Gaijon, Sudipta Ghosh and M. Ramananda Singh.
- 2. Amino Acid Derivatives as Inhibitors for Acid Corrosion of Mild Steel by R. Maheswari.

Related

Thermodynamic study of Green Corrosion Inhibitor on Mild Steel with Aqueous Extract of Ziziphus Quantum Chemical Study of Some Antihistamines as Inhibitors Corrosion for Copper in Nitric Acid Solution Using DFT Method Biochemical Variability study in Genotype and Isolate of Alternaria Blight in Pigeonpea

11/9/21, 8:02 AM Gree	Green Inhibitors for Mitigation of Corrosion of Metals – Chemical Science Review and Letters		
Jujuba Stem and Fruits in 1M HCl	Quantum Chemical Study of Some	Biochemical Variability study in	
Solution	Antihistamines as Inhibitors	Genotype and Isolate of Alternaria	
Thermodynamic Study of Green	Corrosion for Copper in Nitric Acid	Blight in Pigeonpea Laxman	
Corrosion Inhibitor on Mild Steel	Solution Using DFT Method M. A.	Prasad Balai, R B Singh, Asha	
with Aqueous Extract of Ziziphus	Tigori1*, A. Kouyate1, V. Kouakou2,	Sinha and S M Yadav Keywords:	
Jujuba Stem and Fruits in 1M HCl	February 26, 2020	January 23, 2020	
Solution Rakesh Kumar Dubey1,	In "Issue 33"	In "Issue 33"	
January 14, 2020			
In "Issue 33"			

FRONTIERS IN COMPUTATIONAL CHEMISTRY

Editors: Zaheer Ul-Haq Angela K. Wilson

Bentham Books

Frontiers in Computational Chemistry

Volume # 5.

Editors: Zaheer Ul-Haq and Angela K. Wilson

ISSN (Online): 2352-9458

ISSN (Print): 2352-944X

ISBN (Online): 978-981-14-5779-1

ISBN (Print): 978-981-14-5777-7

ISBN (Paperback): 978-981-14-5778-4

©2020, Bentham Books imprint.

Published by Bentham Science Publishers Pte. Ltd. Singapore. All Rights Reserved.

CONTENTS

	2
IST OF CONTRIBUTORS	
HAPTER 1 RECENT ADVANCES AND ROLE OF COMPUTATIONAL CHEMISTRY IN	
RUG DESIGNING AND DEVELOPMENT ON VIRAL DISEASES	
Amit Lochab, Rakhi Thareja, Sangeeta D. Gadre and Reena Saxena	
INTRODUCTION	ŝ
STRUCTURE-BASED COMPUTATIONAL METHODS IN DRUG DESIGNING	è.
Finding the Target Structure	
Pharmacophore Modeling	
Ligand Docking	÷
De Novo Design	
LIGAND BASED COMPUTATIONAL METHODS IN DRUG DESIGNING	4
Quantitative Structure Activity Relationships (QSAR)	
Pharmacophore Modeling	
Virtual Screening	ŝ
Scaffold Hopping	
MULTI TARGET DRUG DESIGNING	
ROLE OF QUANTUM AND MOLECULAR MECHANICS IN DRUG DESIGNING	
Homology Modeling	
Molecular Dynamic Simulations	
Molecular Mechanics Force Fields (MM2, MM3 and MM4)	
Merck Molecular Force Field (MMFF)	
Universal Force Field (UFF)	
Chemistry at Harvard Molecular Mechanics (CHARMM)	
Assisted Model Building with Energy Refinement (AMBER)	2
Quantum/Molecular Mechanics	
Fragment Molecular Orbital Method	
A BRIEF OVERVIEW OF THE ROLE OF CADD IN THE DEVELOPMENT OF DRUGS	1
AGAINST VIRAL DISEASES	
Ebola Virus	÷
Zika Virus	÷
Hepatitis C Virus	
Coronavirus	
FUTURE PERSPECTIVE	
CONSENT FOR PUBLICATION	1
CONFLICT OF INTEREST	÷
ACKNOWLEDGEMENTS	ł
REFERENCES	ŝ
HAPTER 2 MOLECULAR MODELING APPLIED TO DESIGN OF CYSTEINE	
ROTEASE INHIBITORS – A POWERFUL TOOL FOR THE IDENTIFICATION OF HIT	
OMPOUNDS AGAINST NEGLECTED TROPICAL DISEASES	
Igor José dos Santos Nascimento. Thiago Mendonca de Aguino. Paulo Fernando da Silva	ĉ
Santos-Júnior, João Xavier de Araújo-Júnior and Edeildo Ferreira da Silva-Júnior	
INTRODUCTION	
VIRTUAL SCREENING IN DRUG DEVELOPMENT	1
CYSTEINE PROTEASES AND THEIR CATALYTIC MECHANISM	(#)
MOLECULAR MODELING APPLIED TO THE DESIGN OF CYSTEINE PROTEASE	1
INHIBITORS	

PREFACE

Computational chemistry is an important partner to experiment in understanding a very broad range of chemical problems, providing insight not possible or not easily possible to obtain via experiment, and enabling a greater understanding of experiment when it is possible. The span of computational chemistry approaches in terms of both method and applicability is significant – with methods including electronic structure calculations (*e.g.*, density functional theory (DFT)) and free energy relationships (*e.g.*, QSAR, QSPR), with applications spanning from in-depth description of the spectroscopic properties of the smallest of atoms and molecules to the design of new molecules and materials in medicine.

The focus of *Frontiers in Computational Chemistry* is on the application of computational chemistry approaches to biological and organic processes.

In this fifth volume, the six chapters address a diversity of topics including:

Chapter 1 "Recent Advances and Role of Computational Chemistry in Drug Designing and Development on Viral Diseases" Amit Lochab, Rakhi Thareja, Reena Saxena, Sangeeta D. Gadre.

This chapter outlines a number of approaches that are commonly used in drug design, including structural-based and ligand-based computational strategies, and the role of quantum mechanics and molecular mechanics. A brief overview of how these methods have been utilized in the development of drugs against viral disease, addressing ebola, zika, hepatitis C, and coronavirus is provided.

Chapter 2 "Molecular Modeling Applied to Design of Cysteine Protease Inhibitors – A Powerful Tool for the Identification of Hit Compounds Against Neglected Tropical Diseases" Igor José dos Santos Nascimento, Thiago Mendonça de Aquino, Paulo Fernando da Silva Santos-Júnior, João Xavier de Araújo-Júnior, and Edeildo Ferreira da Silva-Júnior.

The impact and importance of computational chemistry in drug development is significant. However, the drug discovery process is truly a fine art, with numerous methods and strategies available. In this chapter, the authors consider a number of different molecular modeling techniques, and demonstrate their use in the development of cysteine protease inhibitors. Cysteine proteases are known to play important roles from growth and development of plants to bone development in humans and animals. In this study, the design of cysteine protease inhibitors against a number of tropical diseases is considered.

Chapter 3 "Application of Systems Biology Methods in Understanding the Molecular Mechanism of Signalling Pathways in the Eukaryotic System", Aditya Rao S.J. and M. Paramesha.

Signalling pathways are critical cascades of reactions that can impact metabolic functions from cell division to cell death. Understanding the underlying mechanisms of signalling pathways is critical, as this can provide insight about how abnormalities can impact the activation or deactivation of signalling events. The authors provide an overview of computational routes that can be used to understand signalling path mechanisms, including systems biology and data mining. Wnt signalling pathways are the focus of this chapter due to their role in growth to cancer.

Chapter 4 "**Implementation of the Molecular Electrostatic Potential over GPUs: Large Systems as Main Target**" J. César Cruz, Ponciano García-Gutierrez, Rafael A. Zubillaga, Rubicelia Vargas and Jorge Garza.

Electrostatic interactions are vital to non-covalent interactions which are prevalent in biological systems. A very useful means to gain insight about these electrostatic interactions is via the molecular electrostatic potential (MEP). MEP is generated using quantum mechanical methods, which represents a significant computational challenge for all but the smallest of molecules. This chapter provides two routes to extend the utility of MEP to larger molecules, utilizing graphical processing units (GPUs) to generate the MEP. The theoretical details are provided, as are a number of useful examples of the application of the methods.

Chapter 5 "Molecular Electron Density Theory: A New Theoretical Outlook on Organic Chemistry" Luis R. Domingo, Nivedita Acharjee.

This chapter highlights molecular electron density theory (MEDT), which was introduced by the co-author, Luis Domingo, in 2015. MEDT is based upon the philosophy that changes in electron density rather than molecular orbital interactions drive molecular reactions. The authors discuss a broad range of quantum mechanical principles and approaches that are a part of MEDT and facilitate the understanding of molecular interactions and reactions. The authors provide a long list of reactions, and conclusions that can be drawn from MEDT about these reactions.

Chapter 6 "Frontier Molecular Orbital Approach to the Cycloaddition Reactions", Anjandeep Kaur.

Cycloaddition reactions, more specifically, 1,3-dipolar cycloaddition reactions, play a critical role from drug discovery to materials design. Controlling the regioselectivity, enantioselectivity, and diastereoselectivity of these reactions is a major challenge. In this chapter, the reactivity and selectivity of a wide variety of 1,3-dipolar cycloaddition reactions is overviewed. A Frontier Molecular Orbital (FMO) approach is considered.

We hope that the readers will find these reviews to be valuable, and that they may inspire trigger further research in the field. We are grateful for the timely efforts made by the editorial personnel, especially Ms. Mariam Mehdi (Assistant Manager Publications), Mr. Obaid Sadiq (Manager Bentham Books), and Mr. Mahmood Alam (Director Publications) at Bentham Science Publishers.

Zaheer Ul-Haq Dr. Panjwani Center for Molecular Medicine and Drug Research International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan

&

Angela K. Wilson Department of Chemistry Michigan State University East Lansing, MI USA

ii

List of Contributors

Amit Lochab	Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India
Aditya Rao S.J.	Department of Plant Cell Biotechnology, CSIR-Central Food Technological Research Institute, Mysuru, India
Anjandeep Kaur	Department of Chemistry, Government Mohindra College Patiala, Patiala, India
Edeildo Ferreira da Silva- Júnior	Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió, Brazil Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió, Brazil
Igor José dos Santos Nascimento	Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió, Brazil
João Xavier de Araújo- Júnior	Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Maceió, Brazil
J. César Cruz	Departamento de Química, Universidad Autónoma Metropolitana- Iztapalapa, México
Jorge Garza	Departamento de Química, Universidad Autónoma Metropolitana- Iztapalapa, México
Luis R. Domingo	Department of Organic Chemistry, University of Valencia, Valencia, Spain
M. Paramesha	Department of Plant Cell Biotechnology, CSIR-Central Food Technological Research Institute, Mysuru, India Department of Food Technology, Davangere University, Karnataka, India
Nivedita Acharjee	Department of Chemistry, Durgapur Government College, West Bengal, India
Paulo Fernando da Silva Santos-Júnior	Chemistry and Biotechnology Institute, Federal University of Alagoas, Maceió, Brazil
Ponciano García-Gutierrez	Departamento de Química, Universidad Autónoma Metropolitana- Iztapalapa, México
Rakhi Thareja	Department of Chemistry, St. Stephens College, University of Delhi, Delhi, India
Rafael A. Zubillaga	Departamento de Química, Universidad Autónoma Metropolitana- Iztapalapa, México
Reena Saxena	Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India
Rubicelia Vargas	Departamento de Química, Universidad Autónoma Metropolitana- Iztapalapa, México
Sangeeta D. Gadre	Department of Physics, Kirori Mal College, University of Delhi, Delhi, India
Thiago Mendonça de Aquino	Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil

Recent Advances and Role of Computational Chemistry in Drug Designing and Development on Viral Diseases

Amit Lochab¹, Rakhi Thareja², Sangeeta D. Gadre³ and Reena Saxena^{1,*}

¹ Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India

² Department of Chemistry, St. Stephens College, University of Delhi, Delhi, India

³ Department of Physics, Kirori Mal College, University of Delhi, Delhi, India

Abstract: The growing number of contagious viral diseases among different geographic regions has become a threat to human health and the economy on a global scale. Various viral epidemics in the past have caused huge casualties due to lack of effective vaccine, the recent outbreak of COVID-19 is a good example of it. Drug designing and development is a lengthy, tedious and expensive process that is always associated with a high level of uncertainty as the success rate of their approval as a drug is very low. Computer-aided drug designing by utilizing in silico methods has shown prominent ways to develop novel drugs in a cost-efficient manner and has evolved as a rescue in the past few years. Interestingly, the highest FDA approval reached a maximum (59 drugs) in 2018 for which a lot of credit goes to the successful development of computational chemistry tools for drug designing in the last two decades. These methods provide better chances of getting hit compounds in a far more accurate and faster way. Drug designing is a cyclic optimization process that involves various steps like creating a molecule, selecting the target for this molecule, analysing the binding pattern and estimating the pharmacokinetics of the molecule. The final development of a drug candidate is cumulative of positive results obtained in each aforementioned step. Various computational techniques/approaches such as molecular dynamic studies, homology modelling, ligand docking, pharmacophore modelling and QSAR can be utilized in each phase of the drug discovery cycle. In this chapter, we aim to highlight the recent advances that have taken place in developing tools and methodologies that lead to in silico preparation of novel drugs against various viral infections like Ebola, Zika, Hepatitis C and Coronavirus.

Keywords: Computational chemistry, Homology modeling, *In Silico*, Ligandbased drug designing, Ligand docking, Multi target drug designing, Pharmacophore modeling, Protein target, Quantum mechanics, Structure-based drug designing, Viral infection, Virtual screening.

^{*} Corresponding author Saxena Reena: Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, India; E-mails: rsaxena@kmc.du.ac.in; reenasax@hotmail.com

Premier Reference Source

Spatial Information Science for Natural Resource Management

Suraj Kumar Singh, Shruti Kanga, and Varun Narayan Mishra

Premier Reference Source

Spatial Information Science for Natural Resource Management

Spatial Information Science for Natural Resource Management

Suraj Kumar Singh (Suresh Gyan Vihar University, Jaipur, India), Shruti Kanga (Suresh Gyan Vihar University, Jaipur, India) and Varun Narayan Mishra (Suresh Gyan Vihar University, Jaipur, India)

Release Date: June, 2020 | Copyright: © 2020 | Pages: 355

DOI: 10.4018/978-1-7998-5027-4

ISBN13: 9781799850274 | ISBN10: 1799850277 | EISBN13: 9781799850281 ISBN13 Softcover: 9781799851547

Table of Contents

Prefacexv		
Acknowledgment		
Chapter 1		
Crisp and Fuzzy AHP in GIS-MCDA for Wildlife Habitat Suitability		
Analysis1		
Suman Sinha, Amity University, Kolkata, India		
Chapter 2		
GIS-based Multi-Criteria Analysis for Delineation of Groundwater Potential		
Zones: A Case Study from Jodhpur District, Rajasthan, India24		
Raghib Raza, Quantum Asia Pvt. Ltd., India		
Gajendra Kumar Chawla, Watershed Development and Soil		
Conservation Department, Jodhpur, India		
Chandra Shekhar Dwivedi, Central University of Jharkhand, India		
Chapter 3		
Evaluation of Multi-Temporal Sentinel-1 Dual Polarization SAR Data for		
Crop Type Classification		
Thota Sivasankar, NIIT University, India		
Pavan Kumar Sharma, Amnex Infotechnologies Pvt. Ltd., India		
M. N. S. Ramya, Independent Researcher, USA		
Pithani Venkatesh, Skymet Weather Services Pvt. Ltd., India		
G. D. Bairagi, M.P. Council of Science and Technology, India		
Chapter 4		
Geo-Spatial Technology for Land Resources Management in Nigeria62		
Ûgonna Chimnonyerem Nkwunonwo, University of Nigeria, Enugu, Nigeria		

Chapter 14

Geomorphic Changes Related to Anthropogenic Interference Along the		
Ganga River From Rishikesh to Haridwar, Uttarakhand, India: Geomorphic		
Response of the Ganga to Tehri Dam	9	
Manish Pandey, University Center for Research and Development		
(UCRD), Chandigarh University, Mohali, India		
Aman Arora, Department of Geography, Faculty of Natural Sciences,		
Jamia Millia Islamia, New Delhi, India		
Rajesh Kumar, Center for the Study of Regional Development,		
Jawaharlal Nehru University, India		
Vijendra Kumar Pandey, Department of Geography, Kirori Mal College,		
University of Delhi, New Delhi, India		
Akshay Kumar, Department of Remote Sensing, Birla Institute of		
Technology, Mesra, India		

Compilation of References	
About the Contributors	
Index	

Chapter 14 Geomorphic Changes Related to Anthropogenic Interference Along the Ganga River From Rishikesh to Haridwar, Uttarakhand, India: Geomorphic Response of the Ganga to Tehri Dam

Manish Pandey

https://orcid.org/0000-0001-8291-2043
University Center for Research and Development (UCRD), Chandigarh University, Mohali, India

Aman Arora

Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India

Rajesh Kumar Center for the Study of Regional Development, Jawaharlal Nehru University, India

Vijendra Kumar Pandey

Department of Geography, Kirori Mal College, University of Delhi, New Delhi, India

Akshay Kumar

b https://orcid.org/0000-0002-4217-4944 Department of Remote Sensing, Birla Institute of Technology, Mesra, India

DOI: 10.4018/978-1-7998-5027-4.ch014

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.